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THEORIES OF HIGH LATITUDE IONOSPHERE IRREGULARITIES:
A REVIEW*

1. INTRODUCTION

Using a variety of experimental techniques, e.g., satellites [Dyson,

1969; Dyson et al., 1974; Sagalyn et al., 1974; Clark and Raitt, 1976; Phelps

and Sagalyn, 1976; Rodriguez et al., 1981], rockets [Olesen et al., 1976;

Ogawa et al., 1976; Kelley et al., 1980], scintillations [Aarons et al., 1969;

Fremouw et al., 1977; Erukhimov et al., 1981], and radar backscatter [Weaver,

1965; Greenwald,, 1974; Hower et al., 1966; Vickrey et al., 1980; Hanuise et

al., 1981], it is now known that the high latitude ionosphere, from the

auroral zone into the polar cap, is a highly structured and nonequilibrium

medium containing irregularities (plasma density fluctuations and structures)

with scale sizes ranging from hundreds of kilometers to meters. Aside from

being an interesting scientific phenomenon, ionospheric irregularities are of

practical interest to the radio-physics community since they can disrupt

transionospheric radio wave communications channels (see recent review by

Davies [1981] and references therein).

Several theories, P.g., particle precipitation, plasma instabilities and

processes, and neutral iluid dynamics have been proposed to account for high

latitude ionospheric irregularities. Recently, considerable quantitative

progress has been made, especially in the area of ionospheric plasma

instabilities, in identifying the physical processes that can lead to high

latitude irregularities. With the advent of the EISCAT incoherent scatter

radar and new radar facilities to be construeted in Greenland, it seems timely

to review the current state of theoretical research dealing with high latitude

ionospheric irregularities. As a result, we present, in this paper, an

overview of theories of naturally occurring high latitude E and F region

ionospheric irrogularities. (For a review of artificially- induced

irregularities, e.g., from ionospheric 'heating' experiments, see Fejer

[1979].) Emphasis will be placed on recent results, particularly with regard

to sources of high latitude irregularities. Physical mechanisms will be

stressed with extensive mathematical analysis avoided. Expertise in plasma

physics has not been assumed. ill -eetial _we summarize the recent and

previous theoretical literature dealing with F region irregularitie wkeia.JAi

lem-f" we concentrate on E region irregularity phenomena..

*Text of invited talk presented at URSI Symposium on "Radio Probing of the High-Latitude Ionosphere
and Atmosphere," Fairbanks, Alaska, August 1982.

Manuscript approved September 27, 1982.
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2. HIGH LATITUDE F REGION IRREGULARITIES

The high latitude latitude ionosphere is profoundly affected by particle

precipitation, currents both parallel and perpendicular to the geomagnetic

field, plasma transport, and thermospheric heating. In the high latitude F

region ionosphere, several irregularity source mechanisms have been

proposed: particle precipitation, plasma processes and instabilities, and

neutral fluid dynamics. We now discuss each of these sources separately and

point out the irregularity spatial scale size regimes in which they are

believed to operate.

2.1 Structure from particle precipitation

Particle precipitation is expected to play an important role in

structuring the high latitude F region ionosphere. Rees [1963] has shown that
low energy 102_103 eV electrons deposit most of their energy at auroral F

layer altitudes. As a result, spatial and temporal structure in the electron

fluxes might be mirrored in the ambient ionospheric plasma. Evidence for this

hypothesis was presented by Dyson and Winningham [1974] who showed good

correlation between structure in low energy electron fluxes and electron

density in the polar cusp. In addition they Indicated that the equatorward

boundary of irregularities in the pre-noon cusp is nearly collocated with the

boundary for soft*(- 300 ev) auroral electron fluxes. The structure inherent

in the electron fluxes presumably derives from processes occurring in the

plasma sheet but no quantitative studies of this structure have been performed

4 to date. Recently, Kelley et al. [1982] gave further evidence that structured

low energy electron precipitation is a source of large scale (A ; 10 km) high

latitude F region ionization irregularities. They performed a spatial Fourier

analysis of the electron density irregularities found by Dyson and Winningham

[1974] and-found irregularity scale sizes distributed from approximately 75 km

to 0.75 km. The power spectra of these irregularities could be described by a

power law proportional to k- 1 -8 9 .

Recently, Vickrey et al. [1980], using the Chatanika incoherent scatter

radar, have studied large scale aproximately magnetic field aligned convecting

plasma enhancements in the midnight sector auroral F region (see Fig. 1).
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These ionization enhancements, which can have their plasma density enhanced by

factors of two to ten over background ambient values, have been observed in

regions of diffuse auroral particle precipitation and associated field aligned

currents. The occurrence of the plasma enhancements is apparently not

strongly related to magnetic activity or to E region processes. The overall

north-south dimensions of some of the observed plasma enhancements is

comparable to the outer scale sizes of the electron density structures

associated with auroral F region particle precipitation events [Kelley et al.,

1982]. As a result, the structured low energy particle precipitation may be

an important source of the large scale F region structure associated with

these plasma enhancements. Large scale east-west structure associated with

the plasma enhancements has also been demonstrated [Tsunoda and Vickrey,

1982). In addition, spatial spectral analysis of these enhancements [Kelley

et al., 1982] have indicated structure from approximately 50 km down to

several kilometers. The presence of smaller kilometer and hundreds of meter

sized plasma density Irregularities collocated with these enhancements has

been verified using satellite scintillation studies [Fremouw et al., 1977;

Rino et al., 1978; Vickrey et al., 1980]. The scintillation measurements have

indicated that the electron density irregularities are structured like L shell

aligned sheets for equatorward convection of the plasma enhancements.

Similar observations [Weber and Buchau, 1981] of correlations between

structured strongly enhanced F region plasma and low energy electron

precipitation have also been reported for the polar cap ionosphere.

2.2 Structure from plasma processes and instabilities

It is logical to consider plasma processes in discussing high latitude

ionospheric irregularities since several sources of free energy are available

to drive various plasma instabilities. Examples of these sources include

density gradients, velocity shears, and currents both parallel and

perpendicular to the geomagnetic field. Both plasma macroinstabilities, which

are fluidlike and operate on scale sizes X >> pe' P,, with Pe(pt) being the

electron (ion) gyroradius, and plasma microinstabilities (X < pe, Pi) have

been invoked to account for high latitude ionospheric irregularities.

3



2.2.1 Plasma macroinstabilities

In the plasma fluid approximation the equations describing the basic

dynamics of the electron and ion high latitude F region plasma can be written

as follows: [Keskinen and Ossakow, 1982]

an

at + V • (n) - 0 (1)

an
+ V e (rv -0 (2)

cT V n x z cE x z V C2  V n eE
e I - I - ei s i -z

-e B n B QeI- n mvei

T c 2  a

m i in n0-(3

cE1 x z Vin cE cT Vln x z V cT V n
vYi +B - i n a - i n

V - QieB

Vics2  Vln V Cs2 l + c 2
ei n e i s 1 z_ + V (4)

V • J-O (5)

Here na(a - i or e) is the species density and E ic the total electric

field. Since we will be interested in low frequencies and long wavelenghts,

we have ignored inertial terms in the electron and ion momentum equations (3)

and (4). Equation (5) results from the assumption of quasi-neutral

fluctuations n e ni - n. In addition vo and V0 refer to the electron and ion

velocities along the magnetic field giving rise to a cold magnetic field

aligned current. The symbol v denotes the ion-neutral collision

frequency, v the electron-ion collision frequency, c the speed of

e i

and Qil(e) the ion (electron) gyrofrequency. We have neglected ven compared

with Vei and taken va / a << 1 for a -i, e (F region approximation).
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The following geometry is used: the y axis is in the north-south

direction, the x axis points west, and the z axis is downward along the

magnetic field.

Any two equations (1),(2), and (5) provide a complete description of the

problem. We will use the ion continuity equation (1) and (5). After

separating the total electric field into an ambient and fluctuating

part E- =, - V 6* and transforming to a frame drifting with velocity Vn - -

[(c/B) ( x Eo (vin E] we can linearize (1) and (5) by

separating n - n (y) + 6n with 6n, 6+ a exp [i(kx + kz - wt)],

w + iy, L (1/n )(an o/y). This gives a growth rate

v . Vin cE0

B evd)] (6)
'2 in "ei2

+ (82 + In el) - Dk - D k 2
i e

where 6 kz/kx, -d - E(Vo - VO), k1
2  kx2, k 2  kz2, Di = (Vei/eQi)cs2

and D (cs2/Vin)ll + [(vin/"i)2/((Veivin/"eai) + (kz2/k12 ))J]. (I denotes

along z).

The expression for the growth rate y in (6) can be maximized as a

function of e - k /k , a measure of field alignment, using ay/3019.= M 0
z x m

giving

V IncE ox+ cE I vli~ /
8m = o0  ( Ox 2 (°2 in 2 + (eiil(7)

S Vd 1Vd i ei

Using typical diffuse auroral F region parameters Vin/i = 10
-4

Ve/9 e =i 10 - 4 , E ox = 10 mV/m, W n eVd = 1 PAW , B - 0.5 G, no 10  cm,

this gives 10 = 10- 4, i.e., approximate field alignment. Insertfng these

parameters into (6) with L = 20 km, Di 2 0.2 m2/s, and D 108 m2/s,

we find that the fastest growing linear modes have growth

times Ymax - 1 = 102 s.

Although there is only one growth rate y as given by (6) it is convenient

to discuss y in two limits. If kz f 0, then the growth rate

y 2, cE o/BL (E x B gradient drift instability) while if Eo
0 , Ymax 2 (Vd/ 2L)(1 + vina e I ve) - I/  and results from the current

convective instability. We now discuss these two instabilitiles.
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It is well know that convecting ionospheric plasma clouds are unstable,

under certain conditions, and can produce plasma irregularities through the E

x B gradient drift instability. The E x B gradient drift instability (Simon,

1963; Linson and Workman, 1970] is a convective instability with its nonlinear

evolution [Zabusky et al., 1973; Scannapieco et al., 1976] resembling the

classical Rayleigh-Taylor instability fChandrasekhar, 1960] which arises when

a heavy fluid is supported by a lighter fluid. The basic ExB instability

mechanism can be understood by noting Figure 2. Here the horizontal line

represents an unperturbed contour of electron density. In addition, the

ambient background electric field is in the y-direction, the ambient

magnetic B in the z-direction, and the background density gradient points in

the x-direction. Let the density be perturbed by a small amplitude sinusoidal

perturbation with wavenumber k parallel to E. In the F region, the ions

drift to the right in the Pedersen direction relative to the electrons. This

-4 gives rise to space charges (+ and -) which in turn cause small scale electric

fields E' alternating in direction as shown. The corresponding E'xBD drifts

will then convect depleted regions upward (toward increasing density) and

enhanced regions downward (toward decreasing density) with the result that

they both appear to grow relative to the background density gradient - an

unstable situation. In the previous configuration the E x B gradient drift

instability can also arise with a neutral wind U blowing in the -x direction

with no E.

Using both analytical and numerical simulation techniques, Keskinen and

Ossakow [1982a] have studied the linear stability and nonlinear evolution of

large scale convecting plasma enhancements in the auroral F-region

ionosphere. Their results indicate that convecting diffuse auroral plasma

enhancements can be driven unstable through the ExB gradient drift

instability. This destabilization can both directly and indirectly generate

plasma density and electric field irregularities and fluctuations with scale

sizes of several hundred kilometers to tens of meters. These irregularities

take the form of anisotropic striation-like structures (elongated in the

north-south direction for equatorward convection) which can form on the order

of half an hour under typical auroral conditions. Fig. 3 illustrates the

model of the plasma enhancement used in the numerical simulations. In a plane

nearly perpendicular to the geomagnetic field Fig. 4 displays the linear and

nonlinear evolution of the ExB instability in a convecting auroral F region

6



plasma enhancement. Parameters were used that agree with the observations of

Vickrey et al. [1980]. Fig. 4a shows the initial configuration of the

ionization enhancement and includes a small 1% density perturbation. Fig. 4b

illustrates the linear regime at t - 550 sec and shows unstable growth on the

poleward side of the equatorward convecting plasma enhancement. Fig. 4c gives

the structure of the plasma enhancement at t = 1000 sec. Finally, Fig. d

displays the plasma enhancement at t - 1600 sec in the well-developed

nonlinear regime where steepened and elongated striation-like structures are

evident. These fingers or striations will be oriented in a direction

dependent upon the local electric field magnitude and direction. These

theoretical results are not inconsistent with recent experimental observations

[Tsunoda and Vickrey, 19821, using the Chatanika radar, which indicate large

neutral wind velocities (E x B gradient drift instability) and fingerlike

structures collocated with large scale convecting plasma enhancements (see

Fig. 5). Vickrey and Kelley [19821 have studied the role of classical

diffusion and a conducting E layer in removing these irregularities once they

are produced. In addition, Keskinen and Ossakow [1982a] found that the larger

scale size irregularities (fingers) can cascade to smaller scale size

structures through nonlinear mode coupling and two-step processes. Examples

of the spatial power spectra of these irregularities in the north-south P(ky)

and east-west P(kx) direction taken in the nonlinear regime of the simulations

is shown in Fig. 6. These power spectra can be well represented by power laws
-n.

of the form P(kx) c kx . with nx = 2-2.5 for 27v/k between 100 km and 3 km
-n

while in the north-south direction P(ky) c k, Y with ny = 2 for 2w/k between
y y y

256 km and 3 km. This process of finger formation, elongation, and steepening

is almost self-similar in character with similar morphologies and power

spectra for scale sizes A between 1 km and 100 m [Keskinen and Ossakow,

* 1982b]. Some observational evidence [Vickrey et al., 1980) indicates that

these plasma enhancements are probably subjected to ambient auroral convection

patterns. As a result, these enhancements could be a major source of F region

ionospheric irregularities throughout the auroral zone and polar cap.

The ExB instability in large scale plasma enhancements results from a

coupling between the convective electric field and a density gradient

perpendicular to the magnetic field. However, the coupling of density

gradients and magnetic field aligned currents can also lead to plasma

instability through the current convective instability [Lehnert, 1958;



Kadomtsev and Nedospasov, 1960]. Ossakow and Chaturvedi [19791 showed that

plasma enhancements can also be linearly unstable to the current convective

instability in regions where the ExB gradient drift instability is stable,

i.e., in regions where the local convection velocity fnd density gradient are

in opposite directions. The basic physical mechanism responsible for the

current convective instability is as follows (see Fig. 7): Let the magnetic

field Bo and current j O be in the z-direction, an ambient electric field

with perpendicular component in the x-direction, and a density gradient in the

y-direction. Consider a density perturbation with wavevector k as shown. The

projection on k of the ion Pedersen drift caused by E results in a drift

that is stable to the ExB instability. However, the assumed direction of

ION implies a relative drift between ions and electrons (in the electron rest

frame) Is anti-parallel to B This motion projected on k gives space charges

and subsequent electric fields E". If the particle motion projected on k is

dominated by jON then the total perturbation space charge electric fields will

be denoted by E'. The corresponding E' x B drifts will then convect enhanced

(depleted) regions out of (into) the figure which will appear to grow relative

to the background density in direct analogy to the ExB gradient drift

instability as outlined previously. The ratio of the linear growth rate of

the E x B gradient drift instability versus the current convective instability

can be written approximately (2Vo/Vd)(1 + S1eVi/iVe) 1/2 . 2Vo /Vd = 2V0ne/J O

since eV I/ Qisve Is of order unity in the auroral F region. Here Vo n cEo/B

is the convection speed across the magnetic field. As a result, for strong

perpendicular electric fields and/or weak currents and ambient densities the

ExB gradient drift instability will dominate and vice versa. The nonlinear

evolution of the current convective instability in the auroral F region
ionosphere was investigated by Keskinen et al. [1980]. The evolution and

morphology of the plasma density irregularities generated by the current

convective instability were similar to that of the ExB instability.

Basically, the current convective instability saturates (stabilizes)

nonlinearly by feeding energy from the linearly unstable waves to the linearly

damped harmonics [Chaturvedi and Ossakow, 1979]. Recently, the current

convective instability in the auroral ionosphere has been extended to include

other effects, e.g., magnetic shear [Huba and Ossakow, 1980] and ion inertial

and collisional effects [Chaturvedi and Ossakow, 1981].

8
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Another source of free energy in the high latitude F region ionosphere is

the magnetic field aligned current system. Drummond and Rosenbluth [1962]

first outlined the theory of field aligned current driven ion cyclotron

instabilities for a collisionless plasma (for k1 pi Z 1). Kindel and Kennel

[1971) applied this theory to the auroral zone on the topside ionosphere where

the plasma is only weakly collisional. Chaturvedi [1976], by invoking the

collisional ion cyclotron instability, has shown that strong field aligned

currents in the auroral F region ionosphere can lead to irregularities with

scale sizes of hundreds of meters perpendicular to the magnetic

field (kipi < 1). The basic mechanism is that a field aligned current can

excite, owing to dissipative effects due to electron-neutral collisions, a

growing ion cyclotron wave propagating nearly transverse to the geomagnetic

field. Current velocities of several kilometers per second are needed to

excite this instability.

Hudson and Kelley [1976] have demonstrated that a temperature gradient

driven drift wave instability, which arises from collinear density and

temperature gradients perpendicular to the magnetic field, might explain

density irregularities with scale sizes of hundreds of meters observed at tyc

equatorward edge of the ionospheric plasma trough.

Kelley and Kintner [1978] have argued that highly structured electric

fields, presumably of magnetospheric origin commonly seen in the dayside

winter high latitude ionosphere, might cause density irregularities with

similar scale sizes through the mixing of flux tubes that have varying plasma

density.

2.2.2. Plasma microinstabilities

Small scale irregularities with sizes on the order of and smaller than

the ion gyroradius (- 10 m in the auroral F region) can be generated very

efficiently through various plasma instability processes. These small scale

irregularities could probably be detected by most high latitude backscatter

radars.

Plasma density gradients, both sharp and smooth, are a ubiquitous feature

of the high latitude F region ionosphere. These density gradients can drive a

variety of drift wave type plasma instabilities. If P is the ion Larmor

radius and L the density gradient scale length, then, in an approximate sense,

9



the following modes are expected to dominate in the following density gradient
1/2

regimes [Mikhallovskii, 1974] Pl/L < (me/mi) universal drift mode;

(me/mI2 < P /L < (me )/4 drift cyclotron mode; (me/ml) < Pi/L,

lower-hybrid-drift mode. The growth of these drift modes tends to maximize

for wavelengths X near the electron or ion Larmor radius. Basu [1978] has

noted, using Ogo 6 satellite observations, a high correlation between small

irregularity structures and high latitude sub-trough plasma density gradients

and invoked drift waves to explain these fluctuations. Other sources of sharp

density gradients in the high latitude F region can be found near auroral arcs

and near large scale convecting plasma enhancements [Vickrey et al., 1980].

Another source of plasma free energy that could directly excite small and

large scale irregularities in the high latitude F region ionosphere is

velocity sheared plasma flows, e.g., near auroral arcs [Kelley and Carlson,

19711. For unstable velocity sheared plasma flows perpendicular to a magnetic

field, the growth is nonlocal and maximizes for irregularity wavenumbers k

such that kLv ( 1 [Mikhailovskii, 1974] where Lv  is the velocity shear

gradient scale length. A local instability (kLv > 1) can operate for velocity

sheared plasma flow parallel to a magnetic field [Mikhailovskii, 1974].

Recently, Keskinen and Huba [1982], using kinetic theory, showed that velocity

sheared electron flow parallel to the geomagnetic field near strong discrete

auroral arcs might also be unstable and lead to centimeter sized small scale

irregularities with scale sites on the order of the electron gyroradius.

Velocity space* instabilities, as opposed to the previously discussed

configuration space instabilities, have also been invoked to explain high

latitude F region small scale irregularities. Ott and Farley [19751 have

found that the action of ion-neutral charge exchange collisions can lead to

anisotropic F region ion velocity distributions under the influence of large

ExB convection velocities. They showed that such distributions are unstable

to the Post-Rosenbluth instability [Rosenbluth and Post, 1965; Post and

Rosenbluth, 1965] which is a short wavelength (k >> Qi/vd), high frequency

(w >> ) instability in which k is nearly perpendicular to B. Here

k, w, i, vd are the wavenumber, frequency, ion cyclotron frequency, and ExB

drift speed, respectively. They showed that this instability would be excited

at short wavelengths (10-20 cm) and argued that it might lead to density

fluctuations of a few percent.

10
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2.3 Structure from neutral fluid dynamics

Since the high latitude ionosphere is a coupled medium consisting of both

plasma and neutral constituents, various plasma processes and irregularities

could be transferred to the neutral gas via collisional effects and vice

versa. Using the Chatanika radar, several studies [Baron, 1972; see recent

review by Hunsucker, 1982 and references therein] have shown that the high

latitude ionosphere often exhibits quasi-periodic fluctuations in electron

density and temperature with these fluctuations having large equatorward

velocities. It is generally accepted [Hunsucker, 1982] that these traveling

ionospheric disturbances [TID's) are ionospheric manifestations of atmospheric

gravity waves [Hines, 1960]. The TID's are a very large scale phenomena with

wavelengths of several hundred to thousands of kilometers. The most likely

sources [Hunsucker, 1982] of the gravity waves/TID's are: (1) Joule heating

and Lorentz forces associated with the auroral elpctrojet and (2) intense

particle precipitation events. These large scale TID's could act to seed

other macroscopic plasma instabilities. Much work remains to be done in this

area.

U
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-II

3. HIGH LATITUDE E REGION IRREGULARITIES

In the high latitude E region, experimental observations using both radar

backscatter [Harang and Stoffregen, 1938; Bowles, 1955; McNamara, 1955;

Balsley and Ecklund, 1972 see reviews by Hultqvist and Egeland (1964), Lange-

Hesse (1967), Unwin and Baggaley, (1972) Greenwald (1979), Fejer and Kelley

(1980)] and rocket techniques [Kelley and Mozer, 1973; Holtet, 1973; Olesen et

al., 1976; Ogawa et al., 19761 have shown the existence of plasma density

irregularities with scale sizes of meters to hundreds of meters. These

irregularities have been shown to be highly correlated with the auroral

electrojet [Greenwald et al., 1975b; Tsunoda et al., 1976a). Various plasma

instabilities and processes have been successful in accounting for many of the

features of these irregularities.

Fluid equations that can describe the basic dynamics of the auroral E

region electrojet plasma can be written [Rogister and D'Angelo, 1970; Sudan et

al. 1973]

an + * ne V -0 (8)
Et e-e(8

V x B T Vn
-(E +' ) + e e + v V -0 (9)
m c m n e-e
e e eani

at + V n 0 (0)

T Vn
( + vi - V) vj = - -i + mi - ii

ne = n = n (12)

where E = - V* and na, va, V , m, T aare (a = e,i) the density, velocity,

collision frequency with neutrals, mass, and temperature, respectively. In

addition, * is the electrostatic potential, E the electric field, c the speed

of light and B the magnetic field. Equations (8) - (12) are valid under the

assumptions of electrostatic waves, charge neutrality ne n ni, isothermal

electrons and ions, and neglect of electron inertia. Taking B -

Box, E e x - V6* linearizing eq. (7) - (12) with

6nt, 6*i exp[(k * x - wt)] and assuming a relative drift Yd between

12



electrons and ions across the magnetic field, we find the frequency and growth

rate of waves propagating perpendicular to the magnetic field:

wk = k • V /(l + (13)

"k (W/l+)[(fle/e )(Wk/kL) + (wk2 - k2cs2 )/V ] (14)

where - V e/a 9,e L - In /Vn I with Vn the electron density gradient along+ Te)/me ] 1/2 0

E., and Cs = [(K(Te + Ti)/m I/I the ion acoustic velocity. Although (13) and

(14) describe only one instability, it is convenient to discuss two well known

limits. If L + - (no density gradient) then (13) and (14) reduce to the

Farley-Buneman instability [Farley, 1963; Buneman, 19631 with instability

threshold condition Vd > cs. If Vd << cs and (Qe/Ve)( t/ak)(1/kL) > 1 then

the (k2 term in (14) can be neglected recovering the E x B gradient drift

(cross field) instability [Simon, 1963] with approximate instability

criterion (e /V e)(Vd/L) > (k2cs2/Vi) when k is along the y direction.

Radar backscatter studies have provided much information regarding small

scale irregularities (with meter-sized wavelengths) in the high latitude E

region. The E region radar echoes, which are highly aspect sensitive, can

only be observed at large angles to the electrojet current due to geometric

considerations. Basically, the echoes can be divided into two types depending

upon their duration and latitudinal and longitudinal extent. Additional

characteristics such as location, threshold, doppler feature, etc. have been

summarized previously [llultqvist and Egeland, 1964; Lange-Hesse, 1967; Unwin

and Baggeley, 1972; Greenwald, 1979; Fejer and Kelley, 19801. The Farley-

Buneman (two-stream) instability, which is driven by the electrojet current,

has been invoked to explain the small scale irregularities in the auroral and

polar cap E region ionosphere [Olesen, 1972; Moorcroft, 1972; Wang and

Tsunoda, 1975; Olesen et al., 1975, 1976; Primdail et al., 19741. The linear

theory of the Farley-Buneman instability seems to explain several features of

small scale irregularities in the high latitude E region especially in the

polar cap, e.g., peak backscatter and electric field fluctuations In the

direction of the current j0lesen et al., 1976; Tsunoda et al., 1976a; Bahnsen

et al. 1978]. However, several irregularity characteristics cannot be

explained using linear theory, e.g., waves propagating with small and large

aspect angles perpendicular to the electrojet current, wave phase velocity In

13



excess of the ion sound speed, saturated wave amplitudes and spectra, and

electron heating. Several nonlinear saturation theories of the Farley-Buneman

Instability have been proposed, e.g., quasilinear effects [Sato, 1972;

Rogister, 1971], resonance broadening [weinstock and Sleeper, 19/2), mode

coupling [Rogistek and Jamin, 1975], and stabilization by external low

frequency E x B turbulence [Keskinen, 1981]. These nonlinear theories predict

different saturated wave amplitudes and steady state spectra. To explain the

large aspect angle waves Hofstee and Forsyth [1972] and Moorcroft [19721 have

suggested an ambient magnetic field distortion caused by large electrojet

currents while Volosevich and Liperovsky [1975] argued for ion acoustic waves

generated by E region field aligned currents. Recently, St.-Maurice et al.

[1981] and Schlegel and St.-Maurice [1981] have shown that anomalous electron

temperatures in the high latitude E region can be quantitatively explained in

terms of plasma heating caused by unstable Varley-Buneman waves (see Fig.

18). Good agreement is made between theory and observations. Finally,

D-Angelo [1973] has proposed the ion cyclotron instability, as generated by

field aligned currents in the high latitude E region, to be another source of

both large and small scale irregularities. D'Angelo notes that the ion

cyclotron wave excitation would probably take place at altitudes higher than

those of the auroral elctrojet current and, subsequently, propagate downward

at an a-pect angle on the order of 10%.

Larger scale irregularities in the high latitude E region with

wavelengths up to several hundreds of meters have been identified principally

through in situ rocket probes [Kelley and Mozer, 1973; Holtet, 1973; Ogawa et

al., 1976). Vertical density gradients are often observed In conjunction with

auroral electrojet currents. As a result, the ExB gradient drift instability

has been invoked [Greenwald, 1974, 1975a] to explain the large scale

irregularities. This instability is different from the ExB instability used

to describe high latitude F region irregularities (see Section 2). In the F

region case, the basic current flow is in the Pedersen direction while the

Hall current dominates in the E region. However, the physical mechanisms

describing the ExB instability in both regions are essentially identical.

Again, the linear theory of the ExB instability cannot account for

irregularities propagating perpendicular to the electrojet current and

saturated wave amplitudes and spectra. Several nonlinear theories of the E-

region gradient drift instability, e.g., quasilinear effects [Sato and Ogawa,

14
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1976], resonance broadening [Weinstock and Williams 1971) and strongly

turbulent nonlinear wave-wave interactions [Sudan and Keskinen, 1977 have

been proposed. Greenwald [1974] has attempted to account for small scale

oblique waves by appealing to a two-step multilinear process [Sudan et al.,

19731 in which secondary vertical short wavelength waves can grow at the

expense of the perturbation electric fields and density gradients associated

with the linearly unstable primary horizontal longer wavelength gradient drift

fluctuations. Greenwald's analysis shows that secondary gradient-drift waves

can be excited while there is difficulty in generating secondary Farley-

Buneman waves. Radar echoes resembling secondary Farley-Buneman modes have

been observed [Moorcroft and Tsunoda, 1978; Moorcroft, 1979].

4
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4. SUMMARY

We have attempted to give an overview of theoretical interpretations of

naturally occurring high latitude E and F region ionospheric irregularities.

Much quantitative progress has been made in recent years in identifying the

source mechanisms of high latitude irregularities. Plasma instabilities have

been shown to play an important role in the generation and evolution of these

irregularities.

In the auroral F region, there is some evidence for large scale

(A > 10 km) structure and irregularities being produced by particle

precipitation events and subsequent formation of large scale size plasma

enhancements. Some experimental observations indicate that these plasma

enhancements appear to follow ambient auroral convection patterns. These

convecting plasma enhancements have been shown to be unstable to plasma

4 macroinstabilities, I.e., the ExB and current-convective instability, which

can generate irregularities and structure with scale sizes on the order of and

smaller than the approximate size of the plasma enhancements. Nonlinear wave-

wave interactions and associated wavenumber cascades can lead to further

structuring until diffusive-like processes dominate and irregularity formation

is quenched. Since these plasma macroinstabilities become highly nonlinear

further progress in this area can only be made through numerical modeling and

simulations of the fundamental plasma equations. Moreover, since the

convective motions can be spatially dependent (e.g., E can be a function of

space) and so introduce velocity shear, it is important to assess the

influence of this velocity shear on the plasma macroinstabilities (see for

example Guzdar et al., 1982; Huba et al., 1982). This would also include

4 being able to model this shear in the nonlinear numerical simulations. In

addition, the role of neutral fluid disturbances, i.e., gravity waves, in

producing large scale irregularities should be further investigated. These

waves could act to "seed" large scale plasma macroinstabilities. The

generation of smaller scale irregularities with the wavelengths of meters to

tens of meters in the auroral F region has been given considerably less

theoretical attention. Free energy sources for these smaller scale structures

include sharp density gradients (leading to drift waves), velocity sheared

4 plasma flows both parallel and perpendicular to the magnetic field, and

anisotropic plasma velocity distributions. An outstanding question is the

16
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saturated amplitudes and spectra of the small scale irregularities and the

role they play in influencing larger scale irregularities and structures.

In the high latitude E region, the strong electrojet currents across the

geomagnetic field have been shown to drive plasma instabilities, i.e., the

Farley-Buneman and ExB Instabilities, which can lead to both small and large

scale Irregularities. The linear theories of these instabilities can explain

several features of the irregularities. Results from nonlinear studies e.g.,

saturated amplitudes, of these Instabilities are conflicting in several

respects. Further analytical and numerical studies of these instabilities

especially the Farley-Buneman (two-stream) instability are needed.
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Fig. 1 - Altitudel/latitude variation of electron density on 27 February 1980,
from 0932 to 0945 LIT [from Vickrey et al., 1980]
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Fig. 3 - Model of plasma enhancement used in numerical simulations [Keskinen and
Ossakow, 1982). The quantity no(x,y) represents the initial plasma enhancement

density profile while Nois the average background auroral F region plusma density.
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The circles represent the numerical simulation results; the solid curve is a least squares

* fit. The units of P(kx), P(ky) are kilometers [figure from Keskinen and Ossakow,
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